If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-32x+100=0
a = 1; b = -32; c = +100;
Δ = b2-4ac
Δ = -322-4·1·100
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{39}}{2*1}=\frac{32-4\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{39}}{2*1}=\frac{32+4\sqrt{39}}{2} $
| 26-13n= | | 2b-12=7b+8 | | 2/5x1/3=3/5x+2/3 | | -18–54x=-18 | | 2.20=0-x/26 | | 6/7x+1/2=0.875 | | 28.75p=967.50-450.00 | | Y=25x500 | | 2(m-16)52= | | 5x=3x+284 | | 6-x/3=2x-8/4 | | -9a-2=26 | | 56/x=39-31 | | n2-11n=0 | | 2|d+4|=12 | | 4-2^5x=21 | | 7^(3x+1)=1/49 | | x4=0.375 | | 2x-14=×+1 | | 4+n=456 | | 224=24x | | y/8=−1.04 | | 50+(n–80)=120 | | 12n–20=52 | | x−16=−31 | | 6x/2=4x+3 | | x/17-26=0 | | 8-1+m)+3=2(m-51/2) | | 1040*1/1100=x | | 1100x+40+30=100 | | x17=26 | | 1040x+40+30=100 |